44 research outputs found

    Optimizing Average-Maximum TTR Trade-off for Cognitive Radio Rendezvous

    Full text link
    In cognitive radio (CR) networks, "TTR", a.k.a. time-to-rendezvous, is one of the most important metrics for evaluating the performance of a channel hopping (CH) rendezvous protocol, and it characterizes the rendezvous delay when two CRs perform channel hopping. There exists a trade-off of optimizing the average or maximum TTR in the CH rendezvous protocol design. On one hand, the random CH protocol leads to the best "average" TTR without ensuring a finite "maximum" TTR (two CRs may never rendezvous in the worst case), or a high rendezvous diversity (multiple rendezvous channels). On the other hand, many sequence-based CH protocols ensure a finite maximum TTR (upper bound of TTR) and a high rendezvous diversity, while they inevitably yield a larger average TTR. In this paper, we strike a balance in the average-maximum TTR trade-off for CR rendezvous by leveraging the advantages of both random and sequence-based CH protocols. Inspired by the neighbor discovery problem, we establish a design framework of creating a wake-up schedule whereby every CR follows the sequence-based (or random) CH protocol in the awake (or asleep) mode. Analytical and simulation results show that the hybrid CH protocols under this framework are able to achieve a greatly improved average TTR as well as a low upper-bound of TTR, without sacrificing the rendezvous diversity.Comment: Accepted by IEEE International Conference on Communications (ICC 2015, http://icc2015.ieee-icc.org/

    O-Band Subwavelength Grating Filters in a Monolithic Photonics Technology

    Full text link
    The data communications industry has begun transitioning from electrical to optical interconnects in datacenters in order to overcome performance bottlenecks and meet consumer needs. To mitigate the costs associated with this change and achieve performance for 5G and beyond, it is crucial to explore advanced photonic devices that can enable high-bandwidth interconnects via wavelength-division multiplexing (WDM) in photonic integrated circuits. Subwavelength grating (SWG) filters have shown great promise for WDM applications. However, the small feature sizes necessary to implement these structures have prohibited them from penetrating into industrial applications. To explore the manufacturability and performance of SWG filters in an industrial setting, we fabricate and characterize O-band subwavelength grating filters using the monolithic photonics technology at GLOBALFOUNDRIES (GF). We demonstrate a low drop channel loss of -1.2 dB with a flat-top response, a high extinction ratio of -30 dB, a 3 dB channel width of 5 nm and single-source thermal tunability without shape distortion. This filter structure was designed using elements from the product design kit provided by GF and functions in a compact footprint of 0.002 mm2 with a minimum feature size of 150 nm.Comment: 4 pages, 3 figure

    Embracing the Market: Entry into Self-Employment in Transitional China, 1978-1996

    Full text link
    This paper introduces labor market transition as an intervening process by which the macro institutional transition to a market economy alters social stratification outcome. Rather than directly addressing income distribution, it examines the pattern of workers’ entry into self-employment in reform-era China (1978-1996), focusing on rural-urban differences and the temporal trend. Analyses of data from a national representative survey in China show that education, party membership and cadre status all deter urban workers’ entry into self-employment, while education promotes rural workers’ entry into self-employment. As marketization proceeds, the rate of entry into self-employment increases in both rural and urban China, but urban workers are increasingly more likely to take advantages of the new market opportunities. In urban China, college graduates and cadres are still less likely to be involved in self-employment, but they are becoming more likely to do so in the later phase of reform. The diversity of transition scenarios is attributed to rural-urban differences in labor market structures.http://deepblue.lib.umich.edu/bitstream/2027.42/39897/3/wp512.pd

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Skolem Sequence Based Self-Adaptive Broadcast Protocol in Cognitive Radio Networks

    No full text
    The base station (BS) in a multi-channel cognitive radio (CR) network has to broadcast to secondary (or unlicensed) receivers/users on more than one broadcast channels via channel hopping (CH), because a single broadcast channel can be reclaimed by the primary (or licensed) user, leading to broadcast failures. Meanwhile, a secondary receiver needs to synchronize its clock with the BS's clock to avoid broadcast failures caused by the possible clock drift between the CH sequences of the secondary receiver and the BS. In this paper, we propose a CH-based broadcast protocol called SASS, which enables a BS to successfully broadcast to secondary receivers over multiple broadcast channels via channel hopping. Specifically, the CH sequences are constructed on basis of a mathematical construct- the Self-Adaptive Skolem Sequence (SASS). Moreover, each secondary receiver under SASS is able to adaptively synchronize its clock with that of the BS without any information exchanges, regardless of any amount of clock drift. ? 2016 IEEE.EI2016-Jul

    Melatonin alleviates cadmium-induced nonalcoholic fatty liver disease in ducks by alleviating autophagic flow arrest via PPAR-α and reducing oxidative stress

    No full text
    ABSTRACT: Cadmium (Cd) is an important environmental pollutant that causes liver damage and induces nonalcoholic fatty liver disease (NAFLD). NAFLD is a fat accumulation disease and has significant effects on the body. Melatonin (Mel) is an endogenous protective molecule with antioxidant, anti-inflammatory, antiobesity, and antiaging effects. However, whether Mel can alleviate Cd-induced NAFLD and its mechanism remains unclear. First, in vivo, we found that Mel maintained mitochondrial structure and function, inhibited oxidative stress, and reduced Cd-induced liver injury. In addition, Mel alleviated lipid accumulation in the liver induced by Cd. In this process, Mel inhibits fatty acid production and promotes fatty acid oxidation. Interestingly, Mel regulated PPAR-α expression and alleviated Cd-induced autophagy blockade. In vitro model, the oil Red O staining, and WB results showed that Mel alleviated Cd-induced lipid accumulation. In addition, RAPA was used to activate autophagy to alleviate Cd-induced lipid accumulation, and TG was used to block autophagy flux to aggravate Cd-induced autophagy accumulation. After knocking down PPAR-α, the autophagosome fusion with lysosomes, and autophagic flux was inhibited and increased Cd-induced lipid accumulation. Mel alleviates mitochondrial damage and oxidative stress, and attenuates Cd-induced NAFLD by restoring the expression of PPAR-α and restoring autophagy flux

    Gain enhancement in a V-shaped plasmonic slot waveguide for efficient loss compensation at the subwavelength scale

    No full text
    a b s t r a c t An active plasmonic slot waveguide comprising an inverted triangular metal wedge incorporated inside a V-shaped plasmonic groove with a low-index gain medium embedded between them is presented, and its guiding properties are investigated numerically at the wavelength of 1550 nm. The presented waveguide is shown to be capable of supporting two fundamental plasmonic slot modes with high field localization to the V-shaped low-index slot region. Due to such strong optical confinement and significant field enhancement, the introduced gain in the slot could effectively compensate the propagation loss of the supported plasmonic modes. It is revealed that for the studied channel plasmonic slot and wedge plasmonic slot modes, notable gain enhancements are observable within a wide range of geometric parameters. For the considered structure with a 10-40 nm-wide slot, the enhancements of gain can be as large as 11%-159% for the CPS mode while 43%-174% for the WPS mode. These values could be further improved by adopting even narrower slots. It is shown that, by introducing a gain medium with coefficients around hundreds of cm À 1 , the modal loss can be largely or even fully compensated, with a subwavelength mode area achievable simultaneously. These unique features of the studied V-shaped plasmonic slot waveguide might be useful for its potential applications in compact, active plasmonic components
    corecore